Homework 2

Due by Tuesday 9/9 at 9:00

- 1. Rank the following functions by order of growth; that is, find an arrangement g_1, g_2, \ldots, g_{15} of the functions satisfying $g_1 = \Omega(g_2)$, $g_2 = \Omega(g_3)$, etc. Partition your list into equivalence classes such that f(n) and g(n) are in the same class if and only if $f(n) = \Theta(g(n))$. $(\sqrt{2})^{\lg n}$, n^2 , n!, n^3 , $\lg^2 n$, $n^{1/\lg n}$, $\ln n$, 1, $2^{\lg n}$, e^n , n, 2^n , $n \lg n$, $\sqrt{\lg n}$, $\ln \ln n$.
- 2. Show that in any subtree of a max-heap, the root of the subtree contains the largest value occurring anywhere in that subtree.
- 3. Using Figure 6.3 in the textbook as a model, illustrate the operation of Build-Max-Heap on the array $A = \langle 5, 3, 17, 10, 84, 19, 6, 22, 9 \rangle$.
- 4. Show that there are at most $\lceil n/2^{h+1} \rceil$ nodes of height h in any n-element heap.
- 5. What is the running time of heapsort on an array A of length n that is already sorted in increasing order? What about decreasing order?
- 6. The operation Heap-Delete (A, i) deletes the item in node i from heap A. Give an implementation of Heap-Delete that runs in $O(\lg n)$ time for an n-element heap.