Homework 1 CSE 450/598 Fall 2007 Arizona State University

Due: Tuesday 8/20 before 9:15

1. Get the html or pdf file of the Python tutorial from
http://docs.python.org/download.html.

Read sections 1, 2, 3, 4.1, 4.2, 4.3, 4.6, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6 or as needed to answer the
questions 4 and 6 that require basic understanding of Python. Work through examples in
the tutorial. (Nothing to be handed in for this question.)

2. Consider the following algorithm:

def isprime(n):
for i = 2, ..., sqrt(n):
if n is divisible by i return false
return true

What does the algorithm do? What is the running time of the algorithm expressed as a
function of n? Suppose 1 is represented as a binary number. Is this algorithm polynomial?
Is it exponential?

3. Order the following functions from asymptotically smallest to asymptotically largest, in-
dicating ties if there are any:

n? n! n>7% gm!) nllgn lg'n

Inlnn nYkm nlglen |pn 1 n
2lgn (Ign)lsm 4lem m+1)! Ign nlgn

For simplicity, write f(n) < g(n) if f(n) = o(g(n)) and f(n) = g(n) if f(n) = O(g(n)).
For example, the functions n?, n, (Tzl), 1’ could be sorted asn < n? = ('21) <«n’

4. Consider the function improve defined as follows:

def improve(f):
known = {}
def compute(arg):
if arg in known
known[arg] = f(arg)
return known[arg]
return compute

Take the first function we wrote for computing Fibonacci numbers,

def fib(n):
if n==0 or n==1:
return 1
else:
return fib(n-1)+fib(n-2)

enter or load the definitions of £ib and improve in your Python interpreter and then try
the following two experiments:

(a) call £ib(20) and then £ib(30)

(b) when £ib(30) halts or you interrupt it, type £ib = improve(fib) and then call
£ib(100).

What is going on? What does improve do and how does it work?

[Useful Python background: definition of function, functions as return values, dictionaries.]

. Consider the stable matching problem in a situation where the number of men (n) is
greater than the number of women (m). Define an appropriate notion of stable matching
for this case. Does there always exist a stable matching? Describe an efficient algorithm to
find one if one exists.

. [Implementation question] Implement the stable matching algorithm in Python. Your
program should have a function matchthem that takes as arguments two lists of rankings:
the first line of this function’s definition should be

def matchthem(mensprefs, womensprefs):

Each of the two arguments should be a list of lists of integers, interpreted like the ma-
trices from the class example: mensprefs[i] [j] = k means that i’s j-th preference is k,
analogously for womensprefs. The course page links to a file that defines the lists that
correspond to the example from the notes.

Your function matchthem should return two dictionaries, one keyed on men and the
other on women. For a man 1i, the dictionary entry manmatch[i] should be the index
of the woman with whom 1 is matched. Similarly, for a woman j, the dictionary entry
womanmatch[j] should be the index of the man with whom j is matched. This is more
information that is needed, strictly speaking, but there is a reason I am asking for this.

For example, when run with the provided input, the result should be the two dictionaries
{0:1, 1:3, 2:0, 3:4, 4:1 } and
{1:0, 3:1, 0:2, 4:3, 1:4 } .

Hint: consider writing an extra function prefers that will test if a woman prefers a man
to her current fiance.

Question: what is the running time of your algorithm? Which of the “basic” operations
are performed in constant time, and which are not?

