Types of randomized algorithms

Monte Carlo
@ running time is deterministic
@ correctness is a random variable
@ example: minimum cut
Las Vegas
@ always correct
@ running time is a random variable

@ example: quicksort

Errors and certainty (1)

Success probability amplification: run the Monte Carlo algorithm
repeatedly many times.

If one run succeeds with probability > 1/2, then with probability
>1- 2% at least one out of k independent runs succeeds.

Transformation

Monte Carlo — Las Vegas

Suppose that the algorithm succeeds with probability > 1/2 and
we can efficiently verify the correctness of a solution.

Run the Monte Carlo algorithm repeatedly, until it succeeds.
The expected number of iterations is at most 2.

Markov's inequality

Let X be a random variable that takes only nonnegative values.
Then,

PrIX > KEX] < %

Chebyshev's inequality

Let X be a random variable. VarX = E[(X — EX)?]. Then,
PrX — EX| > tvVarX] < tl2

(Proof: apply Markov's inequality to the r.v. Y = (X — EX)32))

Example: binomial r.v.

Xp = the number of heads in n tosses of a fair coin.

EX, = n- Pr[heads] = g
1

VarX; = —,VarX, = ﬁ.
4 4

(variance of sum = sum of variances for independent r.v.)

For an unfair coin (Pr[heads] = p),

EX, = np, VarX, = np(1 — p).

Randomized selection

Input: set S of n numbers, integer k < n.
Output: the k-th smallest element S of S.

Sample S to get a smaller subset P, then find the right element in
P.

e With high probability, S¢) € P.

@ P is not very large so sorting it is not too expensive.

Randomized selection

Input: set S of n numbers, integer k < n.
Output: the k-th smallest element S(k) of S.
@ Select n®/* elements of S uniformly with replacement — R.
@ Sort R in time O(n%/*1g n).
Q Leta= R(/) and b= R(h), where [, h = 1/4 + \/>
©Q Let P be the elements of S between a and b.
If Sy & P, orif |P| > 4n3/* 4 2, repeat steps 1-3.
@ Sort P, output 5(Ky = (k rs(a)+1)-

1/4 1/4

<k<n—n

Case 1: n

P={yeS|a<y<b}

With probability 1 — O(n=Y/%), Sy is found in the first pass and
thus only 2n + o(n) comparisons are made.

Randomized selection analysis (1)

If only one pass, only 2n + o(n) comparisons.
Failure modes:

@ atoo large: a > 5.
@ b too small: b < 5.

o P too large: |P| > 4n%/% 4 2.

Failure mode 1: a > 5y

a = R(/)

Stk) & P iff not enough samples in R are < 5.

Let X; = 1 if the i-th random sample is < S(k), 0 otherwise.
Then Pr[X; =1] = k/n. Let X =) . Xi.

Now EX = —; and

VarX = n¥/4(k)(2=k) < "34/4.

Using Chebyshev's inequality:

1

PrI|X — EX| = v/ = Pr{|X — EX| = (2n")(n*/*/2)] = O(-—75).

Failure mode 2: b < 5

Symmetric to failure mode 1. Pr[b < S(;)] = O(ﬁ)
Now probability that we fail in either of the two ways is at most

O(n11/4) + O(,,11/4) = O(#)-

Failure mode 3: |P| > 4n%/* 4-2

Similar to the other two cases.

Random select: remarks

expected running time is 2n + o(n).
best known deterministic algorithm: 3n worst case
deterministic algorithms cannot do better than 2n

randomized algorithm can be improved to
n+ min{k,n — k} + o(n)

Coupon collector’s problem

Start with n empty bins.

Random process: in each step, a ball is placed randomly in one of
the bins.

How long until all the bins are full?

Coupon collector: modeling

X = the number of steps untill all bins are full.

Define random variables properly:

Xo = number of steps until 1 bin is full,

X1 = number of steps after 1 bin is full, until 2 bins are full,

X; = number of steps after i bins are full, until / + 1 bins are full.
(Epochs 1, 2, ..., n.)
Now,

X=Xo+Xo+ -+ Xp_1.

Coupon collector: expectation

Let p; = probability that the (i + 1)-th bin is filled in any step in
i-th epoch.
Then,

