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Abstract
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coefficients are not known with certainty. We consider a restricted absolute robustness
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Under one set of assumptions there exists a sensor placement that is optimal for all
admissible realizations of the coefficients. Under other assumptions, we can apply sorting
to solve each worst-case realization efficiently, or we can apply duality to integrate the
worst-case outcome and have one integer program. The most difficult case is where the
objective parameters are bilinear, and we prove its complexity is NP-hard even under
simplifying assumptions. We consider a relaxation that provides an approximation,
giving an overall guarantee of near-optimality when used with branch-and-bound search.
We present preliminary computational experiments that illustrate the computational
complexity of solving these robust formulations on sensor placement applications.
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1 Introduction

Combinatorial optimization techniques need to address modeling and data un-
certainties in many applications. As early as the 1950s, Dantzig |7] introduced
stochastic programming to deal with aleatory uncertainty, which describes the
inherent variation associated with the system being modeled [10, 16, 17].

More recently, researchers have developed robust optimization methods [12]
to deal with epistemic uncertainty, which describes our lack of knowledge about
information in our model [10, 16, 17]. For example, a common assumption is that
the coefficients in the objective function of the problem are uncertain in the sense
that they each can assume any value within a finite interval. Interval data occurs
often in practice [8, 12|, and when quantitative parameters have a subjective
nature, interval values can be used interactively to provide more intuition about
the model.

Robust optimization methods generally seek a solution that minimizes some
measure of worst performance with respect to the uncertainty in the data. Com-
monly studied criteria for robust optimization are absolute robustness (or mini-
max), and robust deviation (or minimax regret). Yaman, Karason and Pinar [23]
survey recent research for these methods and observe that many absolute robust
formulations of problems with interval uncertainties can be solved with little more
difficulty than the deterministic case. Bertsimas and Sim [5, 6] adopt the interval
model of uncertainty and consider a restricted version of the absolute robustness
criterion. This model of robustness limits the conservativeness of the robust solu-
tion by arguing that it is quite unlikely that all data elements will assume their
worst possible values simultaneously; both the absolute robustness and robust de-
viation criteria may find solutions that have this property. Furthermore, solving
a 0-1 mixed-integer linear program (MILP) under this model is no more difficult
than solving the original problem.

In this paper we consider a version of the absolute robustness criterion that is
naturally restricted by properties of the uncertain data. Specifically, we consider
the case where the uncertain coefficients sum to a constant value. This restricted
absolute robustness criterion is motivated by our recent work with MILP formula-
tions for sensor placement in water distribution networks [4, 3, 21|. These MILPs
rely on information like attack probabilities and water consumption statistics that
are difficult to assess in detail, but for which we have good aggregate estimates.
For example, water utilities have little information about the water consumption
within a given household at a given hour, but they have accurate information
about total water consumption within the entire water distribution network.

We analyze three cases of this restricted absolute robustness criterion that are
motivated by this water security application:
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e unweighted uncertainty: the objective has the form } ; Qg for uncer-
tain coeflicients «y;

e linearly weighted uncertainty: the objective has the form Eij QOGP T,
for uncertain coefficients «; (p; known with certainty); and,

e bilinearly weighted uncertainty: the objective has the form ), ; Qi05ij,
for uncertain coefficients c; and 9;.

We argue that the constant-sum constraints on the uncertain parameters make the
solution to these problems more realistic than formulations with a simple absolute
robustness criterion. Furthermore, these problem formulations do not require a
user-defined parameter to restrict the data uncertainties, so the robustness trade-
off in this problem is more intrinsic than the trade-offs considered in the restricted
absolute robustness models developed by Bertsimas and Sim |5, 6].

The rest of this paper is organized as follows. Section 2 describes and motivates
the three robust MILP formulations. The subsequent three sections analyze these
models and present some preliminary computational experience using them. We
conclude with a discussion of avenues for further research. The mathematical
programming terms are generally defined here as needed, but one can consult the
Mathematical Programming Glossary [9].

2 Motivation for Robust MILP Models

Recent terrorist attacks have heightened concerns about whether community wa-
ter systems are sufficiently well protected to ensure a safe and reliable supply of
drinking water in the United States and around the world. Consequently, there is
growing interest in the use of contaminant sensors to provide ongoing monitoring
of water quality. A good sensor placement maximizes the information available for
contamination control and remediation across a wide range of possible contami-
nation scenarios, so that the fewest users consume contaminated water. A variety
of MILP formulations have been developed to identify good sensor placement con-
figurations [4, 3, 14, 21]. Berry et al. [4, 3] have recently solved moderately large
MILP models of sensor-placement problems.

We model an attack as the release of a large volume of harmful contaminant
at a single junction in the network. For any particular attack, we assume that
all points downstream of the release point can be contaminated. Let R be the
set of pairs of junctions (i, j) such that junction j is downstream of junction 4.!

ITo simplify our presentation, we assume a stable flow pattern for water in this paper. In
particular, the models that we describe do not explicitly account for temporal effects. Berry et
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The primary decision variables for optimization are where to place each of a given
number of sensors. Secondary binary decision variables are z;;, for (i,7) € R,
where z;; = 1 if a contaminant injected at junction 7 can reach junction j without
passing a sensor. (As will be evident, these secondary variables are completely
determined by the sensor placements, but they appear as decision variables from
a computational view.) Let X denote the set of feasible 0-1 z-values.

Consider the following parameter vectors over the nodes: (1) «; is the proba-
bility of an attack at junction i, and (2) §; is the number of people who consume
water at junction i. Note that a is not a probability in the classical sense and is
sometimes called an attack weight. It is estimated from expert judgement about
the vulnerabilities in the network. We estimate ¢ from census data. If the node
1 represents a contracted sub-network, then ¢; is the sum of the estimated popu-
lation numbers for all nodes in the sub-network. We assume that all people at a
contaminated node are potentially exposed.

The following two problems illustrate the data uncertainties that arise in these
applications:

1. Minimize the expected extent of network contamination, as defined by the
number of pipe junctions that become contaminated
NC : min Z Q;45,

zeX
(i.7)ER

2. Minimize the expected population exposed

PE : min 005 T55.
reX
(i,5)eR

In practice, we do not know the values of a and §. Although water utilities
can accurately estimate the total population served by their water distribution
network, most utilities do not currently maintain detailed statistics about the
fraction of the population that is consuming water at each junction. Similarly,
risk assessment methodologies provide a coarse assessment of attack weights.

Let & and & denote specified values of a and 9, respectively. These are some-
times called the central values (viz., most likely values, or best estimates). The

central MILP is thus: ml)I(l > (ijyer @i0zij.  As we let a and § deviate from
Te ’

their central values, their possible values are limited by constant-sum constraints,
Y= ;& =1and ) 6 =), 5;, respectively.

In the next two sections, we consider robust formulations for an absolute ro-
bustness criterion that is restricted in this sense. For objectives like NC, we show

al. [4, 3] describe more detailed IP models.
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that the solution to a specific class of restricted absolute robustness problems is
exactly the solution to the central MILP. More complex objectives, like PE, con-
tain terms with products of uncertain parameters (a;d;). The PE model is less
complex if population values are presumed known, which is what we consider in
Section 3.

We use the following notation in the next sections to define the domain of the
robust optimization problems:

B, L,U)={c:L<c<U >, ck=>1Ck},

where we suppose L < ¢ < U. The set B(¢,L,U) defines a multidimensional
interval of uncertainty about a central value, ¢, where ¢ can be « or 9.

3 Linearly Weighted Uncertainty

Consider the PE problem with known population values at the nodes. The fol-
lowing robust optimization formulation applies our restricted absolute robustness
criteria:

min  max ;0T 1

o aeB(d,g,a) Z (Rl ¥ ( )
(i,))ER

where 0 is presumed known. Since each uncertain term is weighted by a con-

stant value, we say that this absolute robustness criteria uses linearly weighted

uncertainty.

We can apply duality to reformulate problem (1) as follows:

min 7T+ pua —Ada : rxeX
Ap=>0

T+ i — )\z = Z (Sjl’ij for all ’i,
JeJ (@)

where J(i) = {j : (i,j) € R}. The dual variable 7 is associated with the primal
constant-sum constraint, and A, p are associated with the lower and upper bounds,
respectively.

Thus, we can cast a linearly weighted robust optimization as a single MILP,
having replaced the max with min. In particular, this is an augmented MILP
formulation, which simply includes an extended objective and some additional
side-constraints on dual variables from the maximization subproblem.

Alternatively, instead of casting problem (1) as one MILP, we can decompose
it and solve the inner maximization problem to obtain o*(z) for each z in the
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outer minimization. The inner maximization problem can be solved simply by
sorting the coefficients, which requires no more than O(|R|In|R|) time. This
may be computationally more efficient than the integrated formulation.

4 Unweighted Uncertainty

Consider the NC problem with interval uncertainties on the attack probabilities.
The following robust optimization formulation applies our restricted absolute ro-
bustness criteria:

min  max Z Q4. (2)

zeX aeB(&,a, @)
(i.5)ER

We can solve this problem using the methods described in Section 3 (letting ¢; =
1 for all j), but in this section we consider the restricted case where we have
intervals of uncertainty that are proportional to the central value vector. Let
P(é,e) = B¢, (1 —e)é, (1 +¢)¢) for e € [0,1). Given this restricted notion of
interval uncertainty, we prove that the sensor placement decision for the central
attack weight values & remains optimal for any allowed variation.

Let Q(¢) denote a generalized robust optimization problem:

min max cx,
z€X ceP(e)

where X is any subset of binary vectors. The following theorem demonstrates that
the solution to the central MILP (where ¢ is the coefficient of x) is the solution to a
robust formulation that allows percentage deviations within a constant proportion
of its central value. Consequently, no additional computational effort is needed to
generate a robust solution for these problems.

Theorem 4.1 Lete € [0,1). Then, x* is an optimal solution to Q(0) if, and only
if, x* is an optimal solution to Q(¢).

Proof: We begin with some notation and general observations. Let S = )" ;G
Let o(x) = {j : z; # O} (called the “support set” of ). Also, let 1 denote the
vector of all ones: (1,1,...,1)T. The following identities follow from the definitions
of S and o: ¢z = 2360 @0 C =S = jgow G and (1 —x) = S—cx =375 .
Let L=(1—¢)and U = (1+¢).

The dual of max.cp(ee)c is

min 78 + Upc — LA¢ : A\, u > 0,
T4+pj—Aj=x;forall j=1,...,n
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The dual variable 7 is associated with the constant-sum constraint, and A, p are
associated with the lower and upper bound constraints on ¢, respectively.

Let 2° be an optimal solution to Q(0) and let z° be an optimal solution to
Q(e). Our proof divides into two cases, depending on whether ¢éx° is greater or
less than 1S.

Case 1. ¢z° > 6.
Consider the dual solution 7 = 1, u = 0, and AT = 1—2. This is dual-feasible,
where A > 0 because 2° < 1. The dual objective value is

7S+ Upé—LAe =8 — Lé(1 —2°) =S — L(S — é2°) = eS + Leéa®.
Therefore, we have
max cz’ < eS + Léa. (3)
cEP(ée)

Now we define ¢§ = L¢; for j ¢ o(2°). Since we assume that éz® > 15, it
follows that ¢z > 35, which implies that ¢(1 — z°) < 5. Consequently, we have

¢zt = 5= o) G
= 5L jeow) G
= S—L(S—¢éxf) =eS + Léas,
which gives us the bound:

max cx® > eS + Léa®. (4)
ceP(Ee)

Using (3) and (4), we then obtain the following chain of inequalities:
MaXccp(se) L™ > €5 + Léx® > eS + Lég® > maxcep(@ys)cxo > MaXcep(e,e)CT
Thus, equality must hold throughout. This establishes the following two results:

maxcep(@yg)cxo = MaXeepeqcr®  (first = last expression)

ex® = caf (second = third expression and L > 0),

which completes this case.

Case 2. éz2® < 36.

The dual objective value of any dual-feasible solution is an upper bound on the
primal value, cz®. Choose m = 0, 47 = 2°, and X\ = 0. This is clearly dual-feasible,
and its dual objective value is Uéx®. Therefore,

max cx’ < Uéa®, (5)
cEP(E,)
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Now consider the value of éz¢. Suppose éz® < $S. Then define ¢ = Ug¢; for
j € o(xf), and note that ¢ € P(¢,e). This is feasible (i.e., ¢ € P(¢,¢)) because

ccrf < %S. It follows that ccz® = Uca®, so we have m&(xx) cxt > Uéx®. On
ceP(¢,e

the other hand, suppose if éz® > 3S. Then, define ¢; = Le¢j for j ¢ o(zf), and

note that ¢ € P(¢,e). It follows from our analysis in Case 1 that mz(xx) cxt >
ceP(¢e

S + Léax®. Taken together, this gives us the bound:

n%z(lx) cx® > min{Ucx®, S+ Léx®}. (6)
ceP(¢,e

Using Equations (5) and (6), we then obtain the following chain of inequalities:

maXeepeece® > min{Ucz®,eS + Léx®} > min {Uéxo, eS + Léxo}

= Uéx® > maxcep(@,g)cxo > MaXcep(se)CT”

The equality in this chain follows from our assumption that éz° < 1S. We con-
clude that equality must hold throughout, and maxcep(é,a)caro = MaXcep(se)CT’.
Furthermore, this shows that Ucz® = min{Uéx® &S + Léx®} (fourth expression
= second), so either Ucz® = Ucz® or Ucz® = &S + Léx®. In the former case, we
have immediately that ¢z® = éx°. In the latter case, we have the following chain
of inequalities:

Uéz® < eS+ Léa® < eS + Léa® = Uéa®,

from which it follows that éx® = éx°. Consequently, we conclude éz’ = éz°. m

In terms of the sensor placement problem, this result implies that we can solve
problem (2) by solving the central MILP,

because every optimal solution remains optimal for any variation allowance on the
attack weights that are bounded by a common proportion of the central value, &.
This is because the a-maximization increases the objective by a proportion of
S, independently of z. This is what is revealed in the proof and highlights the
simplicity of the robust model.

While we have let attack weights () be the uncertain parameters, we could
let it be population (§) if we assume a uniform distribution on attack location.
This is the case when there is no risk analysis, and one fixes «o; = % for all
i = 1,...,n, where n is the number of nodes. In that case we also have the
unweighted model, but the meaning of the objective changes to the max-expected
population contamination.
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Following Yaman et al. [22], this result may be called a permanent solution.
They found a spanning tree that remains optimal within interval data; we have
a sensor placement that remains optimal under fixed-proportionate interval data
and a constant-sum constraint. In our case, the fixed proportion is necessary —

Theorem 4.1 is not true if we consider the more general set of uncertainties defined

5 Bilinear Weighted Uncertainty

Consider the PE problem with interval uncertainties on both the attack weights
and population. Although the total population remains fixed, in practice we
may not have complete knowledge of the population’s geographic distribution.
Consequently, there may be uncertainties in the values of the ;. The following
robust optimization formulation applies our restricted absolute robustness criteria
considering uncertainties in both o and ¢:

min max C o 00T 7
reX aeB(a,a,@) Z(Z’J)GR T ( )
5 €B(5,4,5)

We say that this absolute robustness criteria uses bilinearly weighted uncertainty
because we have a bilinear maximization problem for the inner maximization.

This is a special case of the bilinear fractional program considered by Maliv-
ert [15]. The general problem is NP-hard, but this inner bilinear program has
several simplifications. The main simplification is that the polyhedron separates
for the two sets of variables, and each polyhedron (the ball) is much simpler than
the general case — just one equation with bounds on the variables.

In Section 5.1, we show that the inner bilinear optimization problem remains
NP-hard with this special structure and even with further special structure re-
lated to sensor placement in water networks. Section 5.2 gives a straightforward
algorithm that reaches a solution that need not be a global maximum. Section
5.3 gives a constant-approximation algorithm, whose error is proportional to the
square of the radius of the ball (¢).

5.1 Complexity

In this section we prove that the inner bilinear optimization problem is NP-hard.
We consider the restricted version of the problem:

Jmax T cp sy, ®
seP(@b,e)
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where both intervals have the same ¢, and z satisfies the following two properties
of our system:

1. The water networks we consider are directed acyclic graphs (dags) — we
cannot have (i,7) € R and (j,7) € R.

2. x satisfies transitive closure — if there is a path from 7 to j with no sensors
(z;; = 1) and there is a path from j to k with no sensors (z;; = 1), then
there is a path from i to k with no sensors (x; = 1).

We further note our special structure:

3. The domain is separable, P(d,¢) x P(4,¢).

4. Each domain is defined by simple bounds and one constant-sum constraint.
We prove NP-hardness by reduction from the clique problem. In particular, given
a graph G = (V, E) with |V| = n and n even, we prove that one can determine
whether this graph has an n/2 clique by solving a bilinear program with our
special structure on a transitively closed dag.

Given G, we construct a bipartite dag G' = (AU P, E') as follows. For each
vertex v; € V, create two sets of nodes and define the centers & and 5

Attack nodes. A =J;_, A;, where A; = {a;; : 1 < j <n} for 1 <i<n, with
(q;; = 1 and d,,; = 0 for all 4, 5.

Population nodes. P = J;_, P;, where P, = {p;; : 1 < j <n}for1<i<n,
with &, = 0 and ¢, =1 for all ¢, j.

(Defining the centers in this way requires the modification of the constant-sum
constraint on « to n?, rather than 1. For the sake of keeping the notation simple,
we invoke a simple scaling argument to allow this.) To build the arc set of G', for
each v; € V we add arcs forming a complete directed bipartite subgraph between
the associated attack and population nodes: put (a;;,pix) € £ for j =1,...,n
and k = 1,...,n. These are structural edges that relate vertices associated with
the same node in G. Further, for each edge (v;,v;) € E, we add arcs (a;j, pj;) and
(aji, pij) in E'. These are graph edges that reflect the structure of the given graph
G (in which we are searching for an n/2 clique). There is at most one graph edge
adjacent to any node in G'.

Thus, G’ is a bipartite dag. Further, G’ is transitively closed because all arcs
go from A to P. The z of our bilinear problem is the n? x n? adjacency matrix of
an n x n bipartite graph. Let M = [mg,]| be defined by m,, = 1 if, and only if,
(a,p) € E' (and my, = 0 otherwise) for all a € A, p € P. Finally, we set
e =1—1/n? to complete the definition of the bilinear problem.

Figure 1 shows a 6-node graph G and the constructed graph G’ with 72 nodes
(6 attack and 6 population per v; for i = 1,...,6).
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Figure 1: Example graph with induced constructed graph.

Summarizing the construction, we have two sets of n? nodes each, and two
sets of arcs, all directed from a € A to p € P. One set of arcs (structural edges)
have the form (aqj, pix), 50 Tayp, = 1 forall v; € V, j,k =1,...,n. (In figure 1
they appear as one thick arc from A; to P;.) The other set of arcs (graph edges)
have the form (a;;, pji) and (ajs, pi;) for (vi,v;) € E, 80 Z4,,p,, = Tajp,, = 1 for all
(vi,vj) € E. For all other f,g € AU P, xy, = 0. The bilinear program has the
following objective value:

Z(f,g)eR apOgTrg = Z(a,p)eE/ Q0pTap (because B/ =R C A x P)
= Z(a,p)eE' a0, (because x4, = 1 for (a,p) € E')

= Zviev Z?:l ZZ:l O‘aij 6pik + Z(’l}i,’l}j)eE (O‘aij 517]'7.' + Oéajiapij)

The o and ¢ values missing from the expression above (viz., o, for p € P and
), for a € A) are required to be zero anyway, because we defined ap = 0 and
o4 = 0. We prove that an optimal solution to our bilinear program over G’ with
e =1—1/n? answers the question of whether G has an n/2 clique.

As defined above, let M be the bipartite incidence matrix for G', so its rows
correspond to A and its columns to P. Because only attack nodes can have
nonzero « and only population nodes can have nonzero J, a feasible solution to
the bilinear problem can redistribute o values only among the attack nodes (rows
of M), and the § values only among the population nodes (columns of M). In
other words, « is constrained by P(&,¢) to satisfy 1 —e < ay,; <1+ ¢ for each
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row a;; of M. Similarly, & is constrained by P(d, ) to satisfy 1 —e < 8, <1+¢
for each column py; of M.

Given a feasible solution (a,d) to the bilinear program, we say that a row
or column of the matrix M is selected if respectively the o or ¢ value is 1 + €.
We say that an entry of the matrix is selected if both its row and column are
selected. We consider only those feasible solutions that set each variable to one of
its bound values, so the number of rows (columns) selected is always %2 to satisfy
the constant-sum constraints. This is illustrated in figure 2.

selected columns

d=1+¢ d=1-¢
selected rows T
a=1+te 3
TQ
a=1—-c¢ %

2 2

Figure 2: Partition of M upon selecting rows, columns, and elements.

Further, we say that a vertex v; € V(G) is selected if all rows and all columns
associated with it (all a;; € A; and p;, € P;) are selected. Finally, v; is partially-
selected if at least one row or column associated with it is selected and at least
one such row or column is not selected.

In what follows, let K = in® + 2(% — 1).

Lemma 5.1 If there is an n/2 clique in G, the optimal value of the bilinear
program is at least K (1 + €)%

Proof:  Assume there is an n/2 clique in G. Select all the vertices in the
clique, so that ag,; = d,, = 1 + ¢ for all v; in the clique and all j = 1,...,n,
and g, ; = 0y, = 1 — ¢ for all v not in the clique and all j = 1,...,n. Now
count the ones in M among the selected elements. Each of the n/2 selected
vertices contributes n? structural edges to G', so there are 3n® ones in M from
the structural edges. The clique has %g(% — 1) edges, and each edge corresponds
to two arcs (graph edges), so there are another % (% — 1) ones among the selected
elements of M. Altogether, this gives K ones in the selected portion of M, so the
value of the objective function must be at least K(1 + £)%. (The other terms in
the objective, corresponding to ones in the other three portions of M, have value
(1—¢)? or (1 —¢)(1+¢), contributing a nonnegative amount. ) ]
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Lemma 5.2 There is an extreme point optimal solution to our bilinear problem
in which every a and § is 1 +¢€ or 1 — ¢, and both as and ds split evenly between
the two extremes.

Proof: Tt is already known [15] that the bilinear program has a solution at an
extreme point of its domain. In our case, each extreme point is the Cartesian
product of an extreme point of P(&,e) and one of 77(3,5). An extreme point
of P(&,¢e) has every variable, except at most one, at a bound value. Because n
is even, the number of nodes in G’ with nonzero bounds in P(&,¢) is even; the
same applies to 73(5 ,€). The constant sum constraint then requires an even split
between variables at 1 4 ¢ and those at 1 — ¢. |

Lemma 5.3 If an extreme point optimal solution attains a value of at least
K (1+¢)?, at least K matriz elements with value 1 (edges of G') have been selected.

Proof: Assume an extreme point attains a value of at least K(1 + ¢)%. The
entire matrix has at most n® + n(n — 1) ones. Recall K = $n® 4+ 2(% —1). So,
selecting K — 1 ones leaves at most n® + %(?’7" — 1) + 1 unselected ones. For
any n > 2, in® + 2(3 — 1) + 1 < n®. Therefore, fewer than n® ones would be
unselected, and each contributes a value of at most (1+¢)(1—¢) to the objective.
But, n3(1 — ) = 1 by definition of ¢, so the total value of the unselected ones is
at most (1+¢) < (1+ ¢)2. Finally, if there are fewer than K selected ones in the
extreme point, the bilinear value is at most

(K-1)(1+e)’+(14+e) < (K-1(1+e)’+1+e)P=K(1+e) g

Theorem 5.1 The bilinear problem has a mazimum value of at least K(1 + ¢€)?
if, and only if, there is an n/2 clique in G.

Proof: Lemma 5.1 establishes the “if” direction. Assume that G contains an
n/2 clique. To prove the “only if” direction, we prove that if there is an optimal
extreme point with K selected ones, there is an optimal extreme point with K
selected ones and n/2 selected vertices. Then, the claim of the theorem follows.

Indeed, if there are K selected ones and n/2 selected vertices, there must be a
clique: the n/2 selected vertices give us n?/2 selected ones. That leaves no other
selected rows or columns, and 5 (5 — 1) selected ones from the edges, which is all
the possible arcs, hence a clique.

To prove that if there is an optimal extreme point with K selected ones, there
is an optimal extreme point with K selected ones and n/2 selected vertices, we
use induction on the size of the counterexample. In other words, we consider a
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minimal counterexample and then show that it can be made smaller still, thus
proving that a counterexample cannot exist.

We define the minimal counterexample as one with the fewest partially-selected
vertices. If there are multiple such counterexamples, we take one that has a
partially-selected vertex with the smallest number of selected rows plus selected
columns. (Every counterexample must have at least one partially selected vertex.)

Let v; be a partially-selected vertex with the fewest selected rows and columns.

Case 1. Suppose vertex v; has no rows selected. Then we can find a partially-
selected vertex v; with at least one selected row and fewer than n selected
columns. To see that such a v; must exist, consider two sets: V;, containing
all v with all columns selected, and V5, containing all v with at least one
selected row. Since in an extreme point solution there are exactly n?/2
selected rows and n?/2 selected columns, we have |V3| > n/2. Furthermore,
v; has at least one column selected so [V;| < n/2. Therefore VoN(V\V;) # 0
and we choose a v; from this set.

We now unselect a column in vertex v; and select a column in vertex v;.
This unselects at most one 1 (corresponding to the edge for the column
originally selected), and selects at least one 1 (in the submatrix for vertex
v;), so we still have at least K selected ones. In a single row or column swap,
all the newly-selected ones now contribute the greatest value of (1 + ¢)? to
the objective (previously they contributed the middle value of (1 —¢?)). All
unselected ones previously contributed the greatest value and now contribute
the middle value. Therefore, as long as the number of selected ones after
the swap does not decrease, the objective function also does not decrease.
Thus, we obtain a smaller counterexample.

Case 2. Symmetrically, if the minimal vertex v; has no selected columns, swap
a row associated with a partially-selected vertex with at least one column
selected and room to select another row. Therefore, the minimal vertex has
at least one row and one column selected.

Case 3. Suppose the minimal vertex v; has r; > 1 rows selected and ¢; > 1
columns selected. Suppose there is a partially-selected vertex v; with r; > r;
selected rows. If v; has fewer than n selected columns, we can swap a column
from v; to v; and get a smaller counterexample. If v; has n selected columns,
swapping a row from v; to v; again gives a smaller counterexample provided
¢; < n. If ¢; = n, then r; is the smallest among all partially-selected vertices
(that is, all other partially-selected vertices v; have r; > r;). There must
be at least n/2 4+ 1 partially-selected or selected vertices. These cannot all
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have n selected columns. Therefore, there exists a vertex v; with ¢; < n.
We must also have r; > r; because if r; = r; and ¢; < n, then v; would be
the minimal vertex (recall ¢; = n). A similar argument holds if there is a v;
with more than ¢; columns selected.

Therefore, in any counterexample all partially-selected vertices have the
same number of rows and columns selected as our minimal vertex v;, say
n>k>1rows and n > ¢ > 1 columns. We know k < n because otherwise
(if £ = n), there are exactly n/2 vertices with all rows selected and exactly
n/2 vertices with no row selected. Since no partially-selected vertex can
have zero rows selected (from Case 1), we can select only those columns cor-
responding to the n/2 vertices that have a row selected. Because we must
select n?/2 columns, we must select all columns for all these vertices and in
fact no vertices are partially selected. A similar argument shows that ¢ < n.

Pick one partially-selected vertex v;, unselect a row and a column of v;, and
select at the same time a row and a column of v;. Consider the submatrices
M,, and M, of M, defined by the rows and columns of v; and, respectively,
v;. By unselecting a row of v;, we unselect ¢ ones in M,,, and unselect at
most one edge. Then, unselecting the column unselects at most k£ — 1 ones
in M,,, and unselects at most one edge. When we select a row of v;, we
select £ ones in M, .. When we select a column of v;, we select k + 1 ones
(including the 1 for the new row and column) in M,,. So, we have unselected
at most k+ ¢+ 1 ones, and selected at least k+ ¢+ 1 ones, yielding a smaller
counterexample.

We have shown that in all cases, it is possible to reduce our counterexample
to a smaller one with at least as many ones. This implies that there is no counter-
example, and thus proves the theorem. [ ]

We have thus established that our inner bilinear optimization problem is NP-
hard despite the simple domain. Our proof used ¢ arbitrarily close to 1. In
practice, we generally have ¢ < k for some x < 1, such as k = §. In such a case
our proof does not apply, and the NP-hardness remains an open question. Further,
this is a theoretical result, and it remains to examine some real applications to
determine how difficult it is to solve this problem in practice (see §6).

5.2 Alternating Ascent

Although we have shown that the inner bilinear program (7) is NP-hard, we may
still need to solve this in a practical manner. We consider a heuristic search
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strategy for solving the inner bilinear program for a given set of x values, which
could be used as an inner loop for a general-purpose search strategy (e.g., meta-
heuristic methods).

Figure 3 describes a simple local search strategy for solving the bilinear pro-
gram for given values of x. Given x, one way to seek a solution is to alternate
between « and 4, solving an LP in each iteration. Each maximization is a linear
program, the same as the inner maximization of the linearly weighted case. Since
each instance has different weights, we may need to sort each time. After a finite
number of iterations, we terminate with extreme point optimal solutions to each
polytope.

Alternating Ascent Algorithm

0. Initialize. Choose o € B(a, o, @), and set k = 0.

k

1. Solve for 4. Given o, compute

6% € argmax {Z(meR aFd;xy 16 € B(0,0, 5)}
2. Solve for a.. Given §*, compute
o € argmax {Z(M)GR a0y o€ B(a, o, 5))}

3. Increment k «— k + 1 and repeat steps 1-3 until 6 = §+!
(k >0, step 1) or ot = oF (step 2).

Figure 3: An alternating ascent algorithm for the bilinear program (7), for a given
value of z.

The bilinear program has an optimal solution among the extreme points of
B(&, a, @) and B(d,9,0). This follows from elementary theory of LP and noting a
necessary condition for (a*,0*) to be optimal [15]:

o’ € argmax {Z(i,j) 0tz o € B(d, a, E)}
0* € argmax {z(i,j) afdjx; 10 € B(s,é,g)} :

Unfortunately, this is not sufficient. If we terminate the algorithm with (a*, %),
all we can say is that this satisfies the above necessary condition. We cannot
rule out the possibility that a simultaneous change in a and ¢ would increase
the objective value. We call a point that satisfies these necessary conditions an
alternating ascent solution.
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An alternating ascent solution is a KKT point (i.e., satisfies the first-order,
Karush-Kuhn-Tucker conditions for optimality). Further, if the algorithm goes
one iteration, the alternating ascent solution cannot be a minimum. It can, how-
ever, be a saddle point.

We have found examples where the alternating ascent solution is not a global
maximum. Although the objective can not be improved by changing « or 9,
keeping the other fixed, we were able to increase the objective value with a simul-
taneous change in « and § (just to neighboring extreme points of their respective
polyhedra). We ran some experiments to see how often this occurs, and the partic-
ular runs indicate that alternating ascent gets trapped at a non-global-maximum
point from relatively few starting points. In all cases, an we found an improvement
by combining neighbors of a in B(&, o, @) with neighbors of § in B(9,4,6). While
inconclusive, this indicates that it may be possible to identify conditions under
which such a search procedure would reach the global maximum. The extreme
points of the bilinear program are easy to characterize, so it may be possible to
exploit this information in some cases to guide the local search. For example, it
might be possible to jump to a non-adjacent extreme point to avoid terminating
at a solution that is not a global maximum.

5.3 Linear Programming Relaxation

In this section we describe a linear relaxation of the bilinear case, using Mc-
Cormick’s bounds, commonly used by the aBB method [2]. McCormick’s bounds
have been used to approximate a bilinear form, u"v, on a rectangle [u,u] x [v, V]
with linear functions using the simple inequalities [2, 18|:

(u—w)'(v-2)20, (u-W)(v-0)20
(u—u)T(v—-71) <0, (u—1)"T(v—2v) <0.

These yield linear (affine) functions that bound u"v from below and above. In
our case, since we are maximizing, we use only the upper bounds in the following
LP relaxation which we call the McCormick Approximation:

max z : o € B(a, o, @), 6§ € B(9,6,9),
2= Vagjer (08 + Wi 0)wyy < = 3 jyer Wi 85 T
z = Z(i,j)eR (ai gj + o 53‘)%‘;‘ < - Z(i,j)e’}z [e% Sj Tij

More generally, the McCormick Approximation has a guaranteed error of
i(@ — a)"(6 — ) times the optimal, established by Androulakis, et al. [2] for
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just the rectangle, [, @] x [d, d]. It is easy to extend this to account for only the
contaminated nodes, giving an approximation guarantee of i(a@ — a)Tz (6 — 9).
For example, if @ = (1 4+ )& and a = (1 — )& then it follows that we have a
1 + €2 approximation.

6 Preliminary Computational Study

In this section we report preliminary computational results for sensor placement
problems on two water networks. We explore the computational difficulty of
solving the full sensor placement problem, which we can solve for the versions
that involve MILPs. We also explore the difficulty of computing optimal and
approximate solutions to the bilinear inner optimization problem for the case
with uncertainty in both attack weights and population distribution.

We performed computations on two real water networks with 97 and 470 nodes
respectively. Water networks for large cities have tens of thousands of nodes, so
these test cases are still about 2 orders of magnitude smaller than many impor-
tant sensor placement problems. However, these experiments serve to illustrate
performance difference even for problems of this modest scale.

When we described the sensor placement problems earlier, we assumed only
one flow pattern. Most cities, however, have multiple normal demand cycles during
a day. For example, desert cities may recharge tanks at night and drain them
during the day. Our water networks have four daily demand patterns, which
are used in our experiments. This makes the computations more realistic and
more difficult. Sensor placements must protect against attacks that can have
fundamentally different effects based upon when they occur. The only changes
required to the models is to add an extra dimension to the input data. Attack
weights and population are now associated with each of the four patterns, and the
expectation in the objective is now taken over these patterns as well.

6.1 Linearly Weighted Uncertainties

Our first set of computational results considers the linearly weighted robust for-
mulation, which can be modeled as a MILP. Our “base case” is the central value
model, where we assume attack weights and population values are exactly equal
to their central values (no robustness modeling). Our experiments illustrate how
much additional computational effort is required to obtain a robust solution. We
proved that the incremental effort is zero for the unweighted robust model, and
we include computational results for two linearly weighted cases:

1. attack weights are uncertain and populations are fixed at their central values.
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2. attack weights are fixed at their (non-uniform) central values and popula-
tions are uncertain.

In all experiments, we consider uncertainties that are proportional to the central
value.

Table 1 shows the total computation time for the central value model (base
case) and for robustly solving the sensor placement problem for our two example
networks. The time reported in the table is the CPU seconds required to solve
each problem running on a dual 3.06 GHz Intel® Xeon™ processor, Linux 2.6.10
system with 2 GB RAM. The number of nodes, reported just after the time, is the
size of the search tree computed by cPLEX®.

Table 1: Computational Results for Complete Sensor Placement Solutions'

Linearly Weighted
Network Central Value | Fixed population | Fixed attack weights
nodes arcs | Ny € time nodes time  nodes time nodes
97 234 | 5 0.1 21.9 16 188.8 24 135.9 20
0.2 50.0 93 25.2 54
0.3 57.1 218 30.7 52
10 0.1 2.9 0 15.0 0 17.7 11
0.2 27.7 14 20.1 3
0.3 32.7 10 20.2 3
20 0.1 11.9 4 28.5 0 27.1 0
0.2 197.7 9 38.7 0
0.3 248.1 29 57.9 40
470 1198 | 5 0.1 | 165.5 0 145.1 0 504.2 0
0.2 463.5 0 546.7 0
0.3 450.8 0 479.6 0
10 0.1 69.9 2 678.7 2 549.9 2
0.2 790.3 9 617.8 2
0.3 892.5 13 764.2 4
20 0.1 69.8 21 75.4 13 1472.9 63
0.2 1335.6 27 1441.1 44
0.3 2482.0 165 1722.8 101

TThese were solved with AMPL® and CPLEX.

These results suggest that computational difficulty will generally increase with
the number of sensors and the robustness tolerance, €. The robust formulation is
almost always more difficult to solve than the central value model. Furthermore,
the results with the larger network show that this robust formulation requires over
an order of magnitude more time to solve in many cases.



6 PRELIMINARY COMPUTATIONAL STUDY 19

6.2 Bilinearly Weighted Uncertainty

Although we have shown that just the bilinear subproblem, itself, is NP-hard, this
result provides limited information about the practical comptuational difficulty
of this formulation. Unfortunately, no currently available system can solve the
bilinearly weighted formulation with global optimality confirmed. Recall that this
model has the form:

min max o'z 0
zeX «,d

The minimand is a maximum, and no system can solve this at present. Although
methods like BARON [19] can solve the inner bilinear program with confirmed
optimality, we must combine that with an outer search strategy on x. Designing
and implementing an outer search coupled with BARON is beyond the scope of
this paper. The full sensor placement model could be written as a semi-infinite
program by replacing the maximand with z and adding the infinite number of
constraints:
2> a'zé for all a, 0.

However, no currently available system can solve this model either.

Consequently, our computational experiments have focused on the time re-
quired to solve the bilinear subproblem for a fixed sensor placement. Table 2
compares the value of the central value model with the values of solutions for the
bilinear subproblem. This subproblem is solved with the alternating ascent heuris-
tic, with the exact BARON solver, and it is approximated with the McCormick
approximation method. In these experiments, we set the contamination array ()
for the bilinear experiments using the values from the central value MILP model.

In all of these experiments, the BARON solver is one or more orders of mag-
nitude slower than the other methods, which should be expected because it is
confirming global optimality. Remarkably, the alternating ascent heuristic gener-
ates solutions with the same value in every case. This contrast provides strong
evidence that it is worth exploring the application of these heuristics for assessing
the robustness of solutions with bilinearly weighted uncertainties. The approx-
imation method was less effective than the alternating ascent heuristic overall,
though the value of the solution that it generates was often quite similar. Finally,
it is noteworthy that the runtime for BARON to solve the bilinear subproblem
was often at least as long as the cost of solving the linearly weighted models. This
suggests that a solver that can exactly solve the entire bilinearly weighted model
will be significantly more expensive to solve than the MILP models for the linearly
weighted uncertainties.
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Table 2: Computational Results for Bilinear Model for a Fixed Sensor Placement'

Central Alternating McCormick Global
Network Ny  value € Ascent Approximation Maximum  Time
1 5 4100 0.1 4949 4949 4949 49.91
0.2 5878 5878 5878 65.43
0.3 6887 6887 6887 68.51
10 3955 0.1 4777 4777 4777 37.87
0.2 5677 5677 5677 37.92
0.3 6654 6654 6654 38.35
20 3907 0.1 4721 4721 4721 27.94
0.2 5613 5613 5613 24.76
0.3 6582 6581 6582 22.49
2 ) 134.54 0.1 158.62 158.61 158.62 2848.73
0.2 184.70 184.67 184.70 2953.75
0.3 212.81 212.70 212.81 2765.20
10 98.12 0.1 115.70 115.70 115.70 2289.35
0.2 134.75 134.72 134.75 2285.12
0.3 155.30 155.19 155.30 2275.44
20  70.13 0.1 82.55 82.54 82.55 1908.85
0.2 95.98 95.97 95.98 1901.59
0.3 110.46 110.40 110.46 1910.16

T Alternating Ascent and McCormick Approximation were computed within MATLAB® (m
files available upon request). McCormick Approximation used Mosek [1] to solve the LP.
Global maxima were computed by BARON [19, 20]. The time reported is the CPU
seconds for BARON to compute the global maximum; the approximations took no more
than a few seconds each.

7 Discussion

There are many possible objectives for sensor placement that reflect various costs
and risks of an attack on a network [21|. Previous work has considered problem
formulations that minimize the volume of water consumed before detection [11],
minimize the time to detection [13]|, and minimize the population exposed to
contaminants before detection [4, 14|. This paper presents a foundation upon
which these objectives, taken separately or multiply, can be considered in a manner
that addresses data uncertainties.

Robust optimization addresses a need to hedge against uncertainty, and these
uncertainties are a fundamental property of sensor placement problems. Data like



7 DISCUSSION 21

attack weights and population distribution are based on expert judgement and
incomplete source data. Although a number of criteria for robust optimization
have been studied, the interval data model, with a constant-sum constraint, fits
these sensor placement problems well.

The simplest case that we have considered is the unweighted uncertainty
model, which represents two cases: (1) only the attack weights are uncertain,
and the objective is the expected number of nodes that are contaminated with-
out detection; and, (2) the attack weights are uniform, and the objective is the
expected population that become contaminated without detection. In this case,
if the interval is restricted to a fixed proportion of the central vector, we have
shown this problem has a permanent solution. This is counter-intuitive, as data
uncertainties should affect our decision. However, we have proven that robust so-
lutions can be obtained from just the central value (which may be the most likely
realization). Thus, obtaining a robust solution does not make the computation
more difficult.

The next level of difficulty is the linearly weighted case: one set of parameters
is fixed at their central values, while the other is uncertain. If we let the population
be uncertain, the attack weights are presumed non-uniform; otherwise, the model
reduces to the unweighted case. In our preliminary experiments, the linearly
weighted case added a modest amount of computational effort to solve the overall
problem.

Although the linearly weighted case can address robustness issues, the bilinear
model is the most general by allowing uncertainty around non-uniform central
values of both attack weights and population. We proved that the maximization
subproblem is NP-hard, even with the simplifications of being in a ball with fixed-
proportionate bounds and one constant-sum constraint. However, it is unclear
whether this maximization subproblem remains NP-hard if we require that ¢ < x
for some £ < 1. Our NP-hardness proof requires ¢ to be arbitrarily close to
1. Further, our computational experiments suggest that we can obtain solutions
for the bilinear subproblem, or at least provide bound information in solving the
master problem. However, we expect that it will be very difficult to compute
exact solutions for bilinearly weighted formulations.

This paper has focused on modeling robustness and analyzing robust formu-
lations. Our computational experiments are preliminary, and thus we cannot
make strong predictions with them. A more comprehensive computational study
of these techniques is clearly an important avenue of future research, including
the development of computational techniques for exactly solving the bilinearly
weighted formulation.
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