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t. A tree (tour) 
over of an edge-weighted graph is a set ofedges whi
h forms a tree (
losed walk) and 
overs every other edge inthe graph.Arkin, Halld�orsson and Hassin (Information Pro
essing Letters 47:275{282, 1993) give approximation algorithms with ratio 3.55 (tree 
over)and 5.5 (tour 
over). We present algorithms with worst-
ase ratio 3 forboth problems.1 Introdu
tion1.1 Problem statement and notation.Let G = (V;E) be an undire
ted graph with a (nonnegative) weight fun
tion
 : E ! Q+ de�ned on the edges. A tree 
over (tour 
over) of G is a subgraphT = (U; F ) su
h that (1) for every e 2 E, either e 2 F or F 
ontains an edgef adja
ent to e: F \N(e) 6= ;, and (2) T is a tree (
losed walk). (We allow thetour 
over to be a 
losed walk in order to avoid restri
ting the weight fun
tion 
to be a metri
. Our algorithm for tour 
over produ
es a 
losed walk in G, but ifthe weight fun
tion 
 satis�es the triangle inequality, this walk may be short-
utinto a simple 
y
le whi
h 
overs all edges in E without in
reasing the weight.)The tree 
over (tour 
over) problem 
onsists in �nding a tree 
over (tour
over) of minimum total weight: minXe2F 
e;over subgraphs H = (U; F ) whi
h form a tree 
over (tour 
over) of G.? Supported in part by the W. L. Mellon Fellowship. (e-mail: jo
hen�andrew.
mu.edu)?? Supported in part by the NSF CAREER grant CCR-9625297. (e-mail:konjevod�andrew.
mu.edu)? ? ? (e-mail: odp�andrew.
mu.edu)y Supported in part by the W. L. Mellon Fellowship. (e-mail: asinha�andrew.
mu.edu)



For a subset of verti
es S � V , we write Æ(S) for the set of edges with exa
tlyone endpoint inside S. If x 2 RjEj is a ve
tor indexed by the edges of a graphG = (V;E) and F � E is a subset of edges, we use x(F ) to denote the sum ofvalues of x on the edges in the set F , x(F ) =Pe2F xe.1.2 Previous work.The tree and tour 
over problems were introdu
ed by Arkin, Hald�orsson and Has-sin [1℄. The motivation for their study 
omes from the 
lose relation of thetour 
over problem to vertex 
over, wat
hman route and traveling pur
haserproblems. They provide fast 
ombinatorial algorithms for the weighted ver-sions of these problems a
hieving approximation ratios 5.5 and 3.55 respe
tively(3.55 is slightly lower than their 
laim|the reason being the re
ent improve-ments in minimum Steiner tree approximation [8℄). For unweighted versionstheir best approximation ratios are 3 (tour 
over) and 2 (tree 
over), and theyalso show how to �nd a 3-approximate tree 
over in linear time. Finally, theygive approximation-preserving redu
tions to vertex 
over and traveling salesmanproblem, showing that tree and tour 
over are MAXSNP-hard problems.Our methods are similar to those used by Biensto
k, Goemans, Sim
hi-Leviand Williamson [2℄, also referred to by Arkin et al. as a possible way of improvingtheir results; however, our algorithms were developed independently and were infa
t motivated primarily by the work of Carr, Fujito, Konjevod and Parekh [3℄on approximating weighted edge-dominating sets.1.3 Algorithm overview.Both our algorithms run in two phases. In the �rst phase we identify a subset ofverti
es, and then in the se
ond phase we �nd a walk or a tree on these verti
es.Very informally, the algorithms 
an be des
ribed as follows.(1) Solve the linear programming relaxation of the tour 
over (tree 
over) prob-lem.(2) Using the optimal solution to the linear program, �nd a set U � V , su
hthat V n U indu
es an independent set.(3) Find an approximately optimal tour (tree) on U .Part (3) above redu
es to the invo
ation of a known algorithm for approxi-mating the minimum traveling salesman tour or the minimum Steiner tree.2 Tour 
over2.1 Linear program.We �rst des
ribe an integer programming formulation of tour 
over.



Let F denote the set of all subsets S of V su
h that both S and V nS indu
eat least one edge of E,F = fS � V j E[S℄ 6= ;; E[V n S℄ 6= ;g:Note that if C is a set of edges that forms a tour 
over of G, then at least twoedges of C 
ross S, for every S 2 F . This observation motivates our integerprogramming formulation of tour 
over. For every edge e 2 E, let the integervariable xe indi
ate the number of 
opies of e in
luded in the tour 
over. Weminimize the total weight of edges in
luded, under the 
ondition that every 
utin F be 
rossed at least twi
e. In order to ensure our solution is a tour wealso need to spe
ify that ea
h vertex has even degree; however, we drop these
onstraints and 
onsider the following relaxation.minXe2E 
exeXe2Æ(S)xe � 2 for all S 2 Fx 2 f0; 1; 2gjEj: (1)Note that sin
e the optimum tour may use an edge of G more than on
e, we
annot restri
t the edge-variables to be zero-one. However, it is not diÆ
ult tosee that under a nonnegative weight fun
tion the minimal solution will neveruse an edge more than twi
e. This follows sin
e an Eulerian tour T1 on a subsetU � V of verti
es may be transformed into an Eulerian tour T2 on U su
h that(1) no edge is used in T2 more times than in T1 and (2) no edge is used in T2more than twi
e.Repla
ing the integrality 
onstraints by0 � x � 2;we obtain the linear programming relaxation. We use ToC(G) to denote the
onvex hull of all ve
tors x satisfying the 
onstraints above (with integrality
onstraints repla
ed by upper and lower bounds on x).To show that ToC(G) 
an be solved in polynomial time we appeal to theellipsoid method [7℄ and 
onstru
t a separation ora
le. We interpret a given
andidate solution x as the 
apa
ities on the edges of the graph G. For ea
h pairof edges e1; e2 2 E we 
ompute the minimum 
apa
ity 
ut in G that separatesthem. The 
laim is that x is a feasible solution i� for ea
h pair of edges e1; e2 2 Ethe minimum-
apa
ity e1; e2-
ut has value at least 2. Clearly, if x is not a feasiblesolution then our pro
edure will �nd a 
ut of 
apa
ity less than 2 having at leastone edge on either side. On the other hand if our pro
edure returns a 
ut ofvalue less than 2 then x 
annot be feasible.Noti
e that the dual of (ToC(G)) �ts into the pa
king framework and theabove ora
le enables us to use fast 
ombinatorial pa
king algorithms [4, 5℄. Thatis, we avoid using the ellipsoid method, redu
ing the time 
omplexity but at the
ost of losing a (1 + �)-fa
tor in the approximation guarantee.



2.2 The subtour polytope.Let G = (V;E) be a graph whose edge-weights satisfy the triangle inequality:for any u, v, and w 2 V , 
uv + 
vw � 
uw:The subtour polytope ST(G) is de�ned asST(G) = fx 2 [0; 1℄jEj j x(Æ(S)) � 2 8S � V; ; 6= S 6= V;and x(Æ(fvg)) = 2 8v 2 V g:In fa
t, the upper-bound 
onstraints x � 1 are redundant andST(G) = fx � 0 j x(Æ(S)) � 2 8S � V; ; 6= S 6= V;and x(Æ(fvg)) = 2 8v 2 V g:2.3 The parsimonious property.Let G = (V;E) be a 
omplete graph with edge-weight fun
tion 
. For everypair of verti
es i, j 2 V , let a nonnegative integer rij be given. The survivablenetwork design problem 
onsists in �nding the minimum-weight subgraph su
hthat for every pair of verti
es i, j 2 V , there are at least rij edge-disjoint pathsbetween i and j. A linear programming relaxation of the survivable networkdesign problem is given byminX
2E 
exeXe2Æ(S)xe � maxij2Æ(S) rij for all S � V; ; 6= S 6= Vx � 0: (2)Goemans and Bertsimas [6℄ prove the following.Theorem 1. If the weight fun
tion 
 satis�es the triangle inequality then forany D � V the optimum of the linear program (2) is equal to the optimum ofminX
2E 
exeXe2Æ(S)xe � maxij2Æ(S) rij for all S � V; ; 6= S 6= VXe2Æ(fvg) xe = maxj2V nfvg rvj for all v 2 Dx � 0: (3)



2.4 Algorithm.We are now ready to state our algorithm for tour 
over.(1) Let x� be the ve
tor minimizing 
x over ToC(G).(2) Let U = fv 2 V j x�(Æ(fvg)) � 1g.(3) For any two verti
es u, v 2 U , if uv 62 E, let 
uv be the weight of the shortestu-v path in G.(4) Run Christo�des' heuristi
 to �nd an approximate minimum traveling sales-man tour on U .The algorithm outputs a tour on U . Sin
e U is a vertex 
over of G, this touris in fa
t a tour 
over of G.We note that there are some trivial 
ases whi
h our algorithm will not handle.However, they 
an be pro
essed separately, and we brie
y mention them here.If the input graph is a star, the 
entral node is a solution of weight zero. Ifthe input graph is a triangle, doubling the 
heapest edge gives us an optimalsolution. All other 
ases 
an be handled by our algorithm.2.5 Performan
e guarantee.Theorem 2. Let x� be the ve
tor minimizing 
x over ToC(G) and U = fv 2V j x�(Æ(fvg)) � 1g: Let F denote the (
omplete) graph with vertex-set U andedge-weights 
 as de�ned by shortest paths in G. Thenminf
y j y 2 ST(F )g � 2minf
x j x 2 ToC(G)g:Proof. Let y = 2x�. Then, y is feasible forA = fx � 0 j x(Æ(fvg)) � 0 8v 2 V n Ux(Æ(fug)) � 2 8u 2 Ux(Æ(S)) � 2 8S � V; S \ U 6= ;; U n S 6= ;; ; 6= S 6= Vx(Æ(S)) � 0 8S � V n U; S 6= ;g:Noti
e that A 
orresponds to the survivable network polytope (2) with require-ment fun
tion ruv = �2 ; u; v 2 U0 ; otherwise.Now letB0 = fx � 0 j x(Æ(fvg)) = 0 8v 2 V n Ux(Æ(fug)) = 2 8u 2 Ux(Æ(S)) � 2 8S � V; S \ U 6= ;; U n S 6= ;; ; 6= S 6= Vx(Æ(S)) � 0 8S � V n U; S 6= ;g:By the parsimonious property (Theorem 1),minf
x j x 2 Ag = minf
x j x 2 B0g:



We de�ne B = fx � 0 j x(Æ(fvg)) = 0 8v 2 V n Ux(Æ(fug)) = 2 8u 2 Ux(Æ(S)) � 2 8S � U; ; 6= S 6= Ug;that is, B is the subtour polytope ST (F ). We next show that B = B0, fromwhi
h it follows that minf
x j x 2 Bg = minf
x j x 2 Ag: (4)Claim. B = B0.Proof. It is 
lear that B0 � B. Let x 2 B. Clearly, for ; 6= S � V n U we havex(Æ(S)) � 0. Now, 
onsider some set S with a requirement of 2. We show thatx(Æ(S)) = x(Æ(S \ U)). The 
laim then follows from x 2 B.In the following we use �U to denote V n U . We also use U : V to denotethe set of edges with exa
tly one end point in ea
h of U and V , that is, U :V = fuv 2 E j u 2 U; v 2 V g. Noti
e that we 
an express the di�eren
ex(Æ(S)) � x(Æ(S \ U)) in the following wayx(S \ �U : �S \ �U) + (5)x(S \ �U : �S \ U)� (6)x(S \ �U : S \ U): (7)Sin
e x 2 B we know that x(Æ(v)) = 0 for all v 2 �U . Hen
e the terms (5), (6),and (7) above evaluate to zero. utThe right-hand side of (4) is equal to minf
x j x 2 ST(F )g. Now, puttingtogether all of the above, we haveminf
x j x 2 ST(F )g = minf
x j x 2 Bg = minf
x j x 2 Ag� 
y = 2
x� = 2minf
x j x 2 ToC(G)g:The �rst equality here follows from the de�nition of B. The se
ond equality isequation (4), and the inequality is true be
ause y is feasible for A. The �nal twoequalities follow from the de�nitions of y and x�. utWolsey [11℄ and Shmoys and Williamson [9℄ prove the following theorem.Theorem 3. Let G = (V;E) be a graph with edge-weight fun
tion 
 satisfyingthe triangle inequality. Then the weight of the traveling salesman tour on Goutput by Christo�des' algorithm is no more than 32 minf
x j x 2 ST (G)g.From Theorems 2 and 3, and the fa
t that minf
x j x 2 ToC(G)g is a lowerbound on the weight of an optimal tour 
over, it follows that the approximationratio of our algorithm for tour 
over 
an be upper-bounded by 3.Corollary 1. The algorithm above outputs a tour 
over of weight no more than3 times the weight of the minimum tour 
over.



3 Tree 
over3.1 Bidire
ted formulation.For tree 
over, we follow essentially the same pro
edure as for tour 
over, withone di�eren
e. We use a bidire
ted formulation for the tree 
over. That is, we �rsttransform the original graph into a dire
ted graph by repla
ing every undire
tededge uv by a pair of dire
ted edges (u ! v); (v ! u) ea
h having the sameweight as the original undire
ted edge. We then pi
k one vertex as the root, andsear
h for a minimum-weight bran
hing whi
h also 
overs all the edges of thegraph. We denote this dire
ted graph by �!G = (V;�!E ).We do not know whi
h vertex to pi
k as the root. However, we 
an simplyrepeat the whole algorithm for every possible 
hoi
e of the root, and pi
k thebest solution. It is easy to see that su
h a bran
hing has a dire
t 
orresponden
ewith a tree 
over in the original undire
ted graph, having the same weight.3.2 Linear program.For a �xed root r, de�ne F to be the set of all subsets S of V n frg su
h that Sindu
es at least one edge of �!E ,F = fS � V n frg j �!E [S℄ 6= ;g:If C is a set of edges forming a tree 
over of G and 
ontaining r, then let�!C denote the bran
hing obtained by dire
ting all edges of C towards the rootr. Now for every S 2 F , �!C must 
ontain at least one edge leaving S. We useÆ+(S) to denote the set of dire
ted edges leaving the set S. Hen
e we have thefollowing IP formulation.minXe2�!E 
exeXe2Æ+(S)xe � 1 for all S 2 Fx 2 f0; 1gj�!E j: (8)Repla
ing the integrality 
onstraints byx � 0;we obtain the linear programming relaxation. We use TrC(�!G ) to denote the
onvex hull of all ve
tors x satisfying the 
onstraints above.



3.3 Quasi-bipartite bidire
ted Steiner tree polytope.A graph G = (V;E) on whi
h an instan
e of the Steiner tree problem is givenby spe
ifying the set R � V of terminals is 
alled quasi-bipartite if S = V nR in-du
es an independent set. Rajagopalan and Vazirani [10℄ give a 32 -approximationalgorithm for the quasi-bipartite Steiner tree problem using a bidire
ted 
ut re-laxation.For a spe
i�
 
hoi
e of a root vertex r, the quasi-bipartite bidire
ted Steinertree polytope QBST(��!G[R℄) is de�ned asQBST(��!G[R℄) = fx 2 [0; 1℄j�!E j j x(Æ+(S)) � 1 8S � V n frg; S \ R 6= ;g:3.4 Algorithm.We are now ready to state our algorithm for tree 
over.(1) For every vertex r 2 V , let x�r be the ve
tor minimizing 
x over TrC(�!G )with r as the root.(2) Let U = fv 2 V j x�r(Æ+(fvg)) � 12g.(3) For any two verti
es u, v 2 U , if uv 62 E, let 
uv be the weight of the shortestu-v path in G.(4) Run the Rajagopalan-Vazirani algorithm to �nd an approximate minimumSteiner tree on �!G , with U as the set of terminals, and 
all this Tr.(5) Pi
k the 
heapest su
h Tr.Note that we are able to solve the linear program in step (1) in essentiallythe same way as the tour 
over LP, appealing to the ellipsoid method and using amin-
ut 
omputation as a separation ora
le. Trivial 
ases exist for this problemtoo; they 
an be handled similar to the way we handle the tour 
over trivial
ases. The algorithm initially yields a bran
hing in the bidire
ted graph. Wemap this in the obvious way to a set of edges in the original undire
ted graph.Some of the edges in this set may be redundant sin
e we were working on themetri
 
ompletion of the dire
ted graph; we prune the solution to get a treewithout any in
rease in weight.The algorithm outputs a tree whi
h spans U (and possibly other verti
es).Sin
e U is a vertex 
over of G, this tree is in fa
t a tree 
over of G.3.5 Performan
e guarantee.Theorem 4. Let x� be the ve
tor minimizing 
x over TrC(�!G ) and U = fv 2V j x�(Æ+(fvg)) � 12g: Thenminf
y j y 2 QBST(��!G[U ℄)g � 2minf
x j x 2 TrC(�!G )g:



Proof. Consider an edge �!e = uv 2 �!E . Sin
e x� 2 TrC(�!G ), we have thatx�(Æ+(fu; vg)) � 1. Hen
e, either x�(Æ+(fug)) � 12 or x�(Æ+(fvg)) � 12 , and Uis a vertex 
over of G. Note that V n U is an independent set be
ause for allu; v 2 V n U , we have x(Æ+(u)) < 12 and x(Æ+(v)) < 12 so that uv =2 E.Now 
onsider the ve
tor y = 2x�. Clearly 
y = 2
x�. Also 
learly y 2QBST(��!G[U ℄). Hen
e if y� is the minimizer of f
y j y 2 QBST(��!G[U ℄)g, then
y� � 
y = 2
x�. utRajagopalan and Vazirani[10℄ prove the following.Theorem 5. Let G = (V;E) be a graph with edge-weight fun
tion 
 satisfyingthe triangle inequality. Let V = R + S be a partition of the vertex set su
hthat G has no edges both of whose end points are in S. Then we 
an �nd inpolynomial time a Steiner tree spanning R of weight no more than 32 minf
x j x 2QBST (��!G[R℄)g.From Theorems 4 and 5 it follows that the approximation ratio of our algo-rithm for tree 
over 
an be upper-bounded by 3.Corollary 2. The algorithm above outputs a tree 
over of weight no more than3 times the weight of the minimum tree 
over.4 Con
lusion4.1 Gap examples: linear program, algorithm.We do not have examples where the worst-
ase performan
e of our algorithm isa
tually a
hieved. However, we do have examples where the ratio of our solutionto the LP solution is equal to the performan
e guarantee.For the tour 
over problem, 
onsider the unit 
omplete graph. It is easy tosee that an optimal LP solution is obtained by setting xe = 1n�2 for ea
h edge inthe graph. This solution has value n(n�1)2(n�2) � n2 . Our algorithm will round this toa tree, whi
h 
ould yield a star having n� 1 edges and all nodes of odd degree.The se
ond stage will then yield a tour having roughly 32 (n� 1) edges, whi
h isof weight 3 times the LP solution.We are not aware of any graph for whi
h the Rajagopalan-Vazirani algorithma
hieves its worst 
ase bound of 32 . Hen
e for the tree 
over, we do not have anexample where the ratio of our solution to even the LP optimum is 3. However,for the 
omplete unit graph, it is easy to see that the integrality gap is at least 2.4.2 Further open questions.Obtaining approximation algorithms with better approximation guarantees is anobvious open question. We note that we do not have examples where either algo-rithm a
tually a
hieves its worst-
ase performan
e bound, so it may be possible



to improve the performan
e guarantees of our algorithms with tighter analyses.The dire
ted version of both problems remains wide open.We also note that we use a two stage pro
edure to solve these problems. Asingle pro
edure whi
h dire
tly puts us in the desired polytopes might yield abetter approximation ratio.Referen
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