Improved approximations for tour and tree
covers

Jochen Kénemann'*, Goran Konjevod?**,

Ojas Parekh®* **, and Amitabh Sinha'f

1 Graduate School of Industrial Administration,
Carnegie Mellon University, Pittsburgh, PA 15213-3890
2 Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh, PA 15213-3890

Abstract. A tree (tour) cover of an edge-weighted graph is a set of
edges which forms a tree (closed walk) and covers every other edge in
the graph.

Arkin, Halldérsson and Hassin (Information Processing Letters 47:275—
282, 1993) give approximation algorithms with ratio 3.55 (tree cover)
and 5.5 (tour cover). We present algorithms with worst-case ratio 3 for
both problems.

1 Introduction

1.1 Problem statement and notation.

Let G = (V,E) be an undirected graph with a (nonnegative) weight function
¢: E — Q4 defined on the edges. A tree cover (tour cover) of G is a subgraph
T = (U, F) such that (1) for every e € E, either e € F' or F contains an edge
[adjacent to e: FN N(e) # 0, and (2) T is a tree (closed walk). (We allow the
tour cover to be a closed walk in order to avoid restricting the weight function ¢
to be a metric. Our algorithm for tour cover produces a closed walk in G, but if
the weight function c satisfies the triangle inequality, this walk may be short-cut
into a simple cycle which covers all edges in E without increasing the weight.)

The tree cover (tour cover) problem consists in finding a tree cover (tour
cover) of minimum total weight:

min E Ce,

over subgraphs H = (U, F') which form a tree cover (tour cover) of G.

* Supported in part by the W. L. Mellon Fellowship. (e-mail: jochen@andrew. cmu.edu)
** Supported in part by the NSF CAREER grant CCR-9625297. (e-mail:
konjevod@andrew.cmu.edu)

(e-mail: odp@andrew.cmu.edu)
 Supported in part by the W. L. Mellon Fellowship. (e-mail: asinha@andrew. cmu. edu)

* K x

For a subset of vertices S C V, we write §(S) for the set of edges with exactly
one endpoint inside S. If z € RIZ! is a vector indexed by the edges of a graph
G = (V,E) and F C E is a subset of edges, we use z(F') to denote the sum of
values of = on the edges in the set F', (F) =) . @e.

1.2 Previous work.

The tree and tour cover problems were introduced by Arkin, Haldérsson and Has-
sin [1]. The motivation for their study comes from the close relation of the
tour cover problem to vertex cover, watchman route and traveling purchaser
problems. They provide fast combinatorial algorithms for the weighted ver-
sions of these problems achieving approximation ratios 5.5 and 3.55 respectively
(3.55 is slightly lower than their claim—the reason being the recent improve-
ments in minimum Steiner tree approximation [8]). For unweighted versions
their best approximation ratios are 3 (tour cover) and 2 (tree cover), and they
also show how to find a 3-approximate tree cover in linear time. Finally, they
give approximation-preserving reductions to vertex cover and traveling salesman
problem, showing that tree and tour cover are MAXSNP-hard problems.

Our methods are similar to those used by Bienstock, Goemans, Simchi-Levi
and Williamson [2], also referred to by Arkin et al. as a possible way of improving
their results; however, our algorithms were developed independently and were in
fact motivated primarily by the work of Carr, Fujito, Konjevod and Parekh [3]
on approximating weighted edge-dominating sets.

1.3 Algorithm overview.

Both our algorithms run in two phases. In the first phase we identify a subset of
vertices, and then in the second phase we find a walk or a tree on these vertices.
Very informally, the algorithms can be described as follows.

(1) Solve the linear programming relaxation of the tour cover (tree cover) prob-
lem.

(2) Using the optimal solution to the linear program, find a set U C V, such
that V' \ U induces an independent set.

(3) Find an approximately optimal tour (tree) on U.

Part (3) above reduces to the invocation of a known algorithm for approxi-
mating the minimum traveling salesman tour or the minimum Steiner tree.

2 Tour cover

2.1 Linear program.

We first describe an integer programming formulation of tour cover.

Let F denote the set of all subsets S of V' such that both S and V'\ S induce
at least one edge of E,

F={SCV|E[S]#0, E[V\S]#0}.

Note that if C' is a set of edges that forms a tour cover of G, then at least two
edges of C cross S, for every S € F. This observation motivates our integer
programming formulation of tour cover. For every edge e € E, let the integer
variable z. indicate the number of copies of e included in the tour cover. We
minimize the total weight of edges included, under the condition that every cut
in F be crossed at least twice. In order to ensure our solution is a tour we
also need to specify that each vertex has even degree; however, we drop these
constraints and consider the following relaxation.

min Z Cee

eclE
> z,>2 forallSerF (1)
e€d(S)

z € {0,1,2}/El

Note that since the optimum tour may use an edge of G more than once, we
cannot restrict the edge-variables to be zero-one. However, it is not difficult to
see that under a nonnegative weight function the minimal solution will never
use an edge more than twice. This follows since an Eulerian tour 77 on a subset
U C V of vertices may be transformed into an Eulerian tour 75 on U such that
(1) no edge is used in T» more times than in 77 and (2) no edge is used in T
more than twice.
Replacing the integrality constraints by

0<z<2,

we obtain the linear programming relaxation. We use ToC(G) to denote the
convex hull of all vectors x satisfying the constraints above (with integrality
constraints replaced by upper and lower bounds on z).

To show that ToC(G) can be solved in polynomial time we appeal to the
ellipsoid method [7] and construct a separation oracle. We interpret a given
candidate solution z as the capacities on the edges of the graph G. For each pair
of edges e1,es € E we compute the minimum capacity cut in G that separates
them. The claim is that x is a feasible solution iff for each pair of edges e;,e5 € E
the minimum-capacity ej, es-cut has value at least 2. Clearly, if z is not a feasible
solution then our procedure will find a cut of capacity less than 2 having at least
one edge on either side. On the other hand if our procedure returns a cut of
value less than 2 then z cannot be feasible.

Notice that the dual of (ToC(G)) fits into the packing framework and the
above oracle enables us to use fast combinatorial packing algorithms [4, 5]. That
is, we avoid using the ellipsoid method, reducing the time complexity but at the
cost of losing a (1 + ¢)-factor in the approximation guarantee.

2.2 The subtour polytope.

Let G = (V,E) be a graph whose edge-weights satisfy the triangle inequality:
for any u, v, and w € V,
Cuv + Cow 2 Cuw-

The subtour polytope ST(G) is defined as

ST(G) ={x € [0,1]'Fl | 2(6(S)) >2 VS CV, 0 #S £V,
and z(6({v})) =2 Yw e V}.

In fact, the upper-bound constraints z < 1 are redundant and

ST(G) ={z>0]x(6(5) 22 VSCV, 0 #S#V,
and z(6({v})) =2 Yw e V}.

2.3 The parsimonious property.

Let G = (V,E) be a complete graph with edge-weight function c¢. For every
pair of vertices ¢, j € V, let a nonnegative integer r;; be given. The survivable
network design problem consists in finding the minimum-weight subgraph such
that for every pair of vertices i, j € V, there are at least r;; edge-disjoint paths
between ¢ and j. A linear programming relaxation of the survivable network
design problem is given by

min E CeTe

ceFR
Zwe_maxr” forall SCV,0#£S#V (2)
e€d(S iyes(s
z > 0.

Goemans and Bertsimas [6] prove the following.

Theorem 1. If the weight function c satisfies the triangle inequality then for
any D CV the optimum of the linear program (2) is equal to the optimum of

min E Cele

ceEE
Za:e_maxr” foral SCV, 0 #£A£S#£V
eca(s i§es(S (3)
Z Te = MAX Ty for all v € D
JGV\{v}

ecd({v})
z > 0.

2.4 Algorithm.
We are now ready to state our algorithm for tour cover.

(1) Let z* be the vector minimizing cz over ToC(G).

(2) Let U ={w e V| 2*(6({v})) > 1}.

(3) For any two vertices u, v € U, if uv ¢ E, let ¢y, be the weight of the shortest
u-v path in G.

(4) Run Christofides’ heuristic to find an approximate minimum traveling sales-
man tour on U.

The algorithm outputs a tour on U. Since U is a vertex cover of G, this tour
is in fact a tour cover of G.

We note that there are some trivial cases which our algorithm will not handle.
However, they can be processed separately, and we briefly mention them here.
If the input graph is a star, the central node is a solution of weight zero. If
the input graph is a triangle, doubling the cheapest edge gives us an optimal
solution. All other cases can be handled by our algorithm.

2.5 Performance guarantee.

Theorem 2. Let z* be the vector minimizing cx over ToC(G) and U = {v €
V | 2*(6({v})) > 1}. Let F denote the (complete) graph with vertex-set U and
edge-weights ¢ as defined by shortest paths in G. Then

min{cy | y € ST(F)} < 2min{cz | z € ToC(G)}.
Proof. Let y = 2x*. Then, y is feasible for

A={z>0]|26{v}) >0 YweV\U
z(6({u})) >2 YueU
z(6(S) >2VSCV, SNU#B, U\NS#0D, 0#S#V
z(5(S)) >0 VSCV\U, S #0}.

Notice that A corresponds to the survivable network polytope (2) with require-

ment function
2 , uwwelU
Tuv =

0 , otherwise.
Now let
B={z>0]|z(6({v})) =0 Ywe V\U
z(6({u})) =2 YueU
z(0(S) >2VSCV, SNU#B, U\NS#0,0#S#V
z(5(S)) >0 VSCV\U, S #0}.

By the parsimonious property (Theorem 1),

min{cz | z € A} = min{cz | z € B°}.

We define

B={z>0]|z(0({v})) =0 Yo e V\U
z(0({u})) =2 YueU
z(0(S)) >2 VS CU, 0#S#U},

that is, B is the subtour polytope ST(F). We next show that B = B°, from
which it follows that

min{cz | x € B} = min{cz | z € A}. (4)
Claim. B = B°.

Proof. Tt is clear that B® C B. Let x € B. Clearly, for) #. S C V \ U we have
z(6(S)) > 0. Now, consider some set S with a requirement of 2. We show that
z(6(S)) = 2(6(SNU)). The claim then follows from = € B.

In the following we use U to denote V \ U. We also use U : V to denote
the set of edges with exactly one end point in each of U and V, that is, U :
V={uv € E|u €U v € V} Notice that we can express the difference
z(6(S)) —x(6(SNU)) in the following way

z(SNU:SNU) + (5)
z(SNU:SNU) - (6)
z(SNU:SNU). (7)

Since € B we know that z(6(v)) = 0 for all v € U. Hence the terms (5), (6),
and (7) above evaluate to zero. O

The right-hand side of (4) is equal to min{cz | € ST(F)}. Now, putting
together all of the above, we have

min{cz | z € ST(F)} = min{cz | x € B} = min{cz | z € A}
< ¢y = 2cz* = 2min{cz | z € ToC(G)}.
The first equality here follows from the definition of B. The second equality is

equation (4), and the inequality is true because y is feasible for A. The final two
equalities follow from the definitions of y and x*. O

Wolsey [11] and Shmoys and Williamson [9] prove the following theorem.

Theorem 3. Let G = (V, E) be a graph with edge-weight function c satisfying
the triangle inequality. Then the weight of the traveling salesman tour on G
output by Christofides’ algorithm is no more than 3 min{cz | z € ST(G)}.

From Theorems 2 and 3, and the fact that min{cz | z € ToC(G)} is a lower
bound on the weight of an optimal tour cover, it follows that the approximation
ratio of our algorithm for tour cover can be upper-bounded by 3.

Corollary 1. The algorithm above outputs a tour cover of weight no more than
3 times the weight of the minimum tour cover.

3 Tree cover

3.1 Bidirected formulation.

For tree cover, we follow essentially the same procedure as for tour cover, with
one difference. We use a bidirected formulation for the tree cover. That is, we first
transform the original graph into a directed graph by replacing every undirected
edge uv by a pair of directed edges (u — v), (v — u) each having the same
weight as the original undirected edge. We then pick one vertex as the root, and
search for a minimum-weight branching which also covers all the edges of the
graph. We denote this directed graph by G = (v, ﬁ)

We do not know which vertex to pick as the root. However, we can simply
repeat the whole algorithm for every possible choice of the root, and pick the
best solution. It is easy to see that such a branching has a direct correspondence
with a tree cover in the original undirected graph, having the same weight.

3.2 Linear program.

For a fixed root r, define F to be the set of all subsets S of V'\ {r} such that S
induces at least one edge of ﬁ,

F={SCV\{r}| E[S] #0}.

If C is a set of edges forming a tree cover of G and containing r, then let
T denote the branching obtained by directing all edges of C' towards the root
r. Now for every S € F, must contain at least one edge leaving S. We use
d1(S) to denote the set of directed edges leaving the set S. Hence we have the
following IP formulation.

min E CeTe

667?

Z x> 1 forall S € F (8)
e€dt(S)

e {01}/ 7,
Replacing the integrality constraints by
z >0,

we obtain the linear programming relaxation. We use TrC(ﬁ) to denote the
convex hull of all vectors x satisfying the constraints above.

3.3 Quasi-bipartite bidirected Steiner tree polytope.

A graph G = (V, E) on which an instance of the Steiner tree problem is given
by specifying the set R C V of terminals is called quasi-bipartite if S = V' \ R in-
duces an independent set. Rajagopalan and Vazirani [10] give a %—approximation
algorithm for the quasi-bipartite Steiner tree problem using a bidirected cut re-
laxation.

For a specific choice of a root vertex r, the quasi-bipartite bidirected Steiner
tree polytope QBST(Cﬁ) is defined as

QBST(GIR]) = {« € [0,1] T | 2(5*(S)) > 1 VS CV\ {r}, SN R #0}.

3.4 Algorithm.

We are now ready to state our algorithm for tree cover.

(1) For every vertex r € V, let z} be the vector minimizing cx over TrC(a)
with r as the root.

(2) Let U = {v e V [23(5* ({v})) > L},

(3) For any two vertices u, v € U, if uv ¢ E, let ¢, be the weight of the shortest
u-v path in G.

(4) Run the Rajagopalan-Vazirani algorithm to find an approximate minimum
Steiner tree on G, with U as the set of terminals, and call this 7.

(5) Pick the cheapest such T;.

Note that we are able to solve the linear program in step (1) in essentially
the same way as the tour cover LP, appealing to the ellipsoid method and using a
min-cut computation as a separation oracle. Trivial cases exist for this problem
too; they can be handled similar to the way we handle the tour cover trivial
cases. The algorithm initially yields a branching in the bidirected graph. We
map this in the obvious way to a set of edges in the original undirected graph.
Some of the edges in this set may be redundant since we were working on the
metric completion of the directed graph; we prune the solution to get a tree
without any increase in weight.

The algorithm outputs a tree which spans U (and possibly other vertices).
Since U is a vertex cover of G, this tree is in fact a tree cover of G.

3.5 Performance guarantee.

Theorem 4. Let z* be the vector minimizing cx over TrC(a) and U = {v €
V |20+ ({o}) > 4}. Then

min{cy | y € QBST(CW)} < 2minf{cz |z € TrC(a)}.

Proof. Consider an edge @ = uv € E. Since 2* € TrC(a), we have that
z* (67 ({u,v})) > 1. Hence, either z*(6+({u})) > & or *(6T({v})) > 3, and U
is a vertex cover of G. Note that V' \ U is an independent set because for all
u,v € V\U, we have z(6"(u)) < 1 and z(6%(v)) < § so that uv ¢ E.

Now consider the vector y = 2z*. Clearly cy = 2cx*. Also clearly y €
QBST(CW). Hence if y* is the minimizer of {cy | y € QBST(CW)}, then

cy* < cy = 2cx*. O
Rajagopalan and Vazirani[10] prove the following.

Theorem 5. Let G = (V, E) be a graph with edge-weight function ¢ satisfying
the triangle inequality. Let V. = R + S be a partition of the vertex set such
that G has no edges both of whose end points are in S. Then we can find in
polynomial time a Steiner tree spanning R of weight no more than %min{ca: | z €

QBST(GIR)}.

From Theorems 4 and 5 it follows that the approximation ratio of our algo-
rithm for tree cover can be upper-bounded by 3.

Corollary 2. The algorithm above outputs a tree cover of weight no more than
3 times the weight of the minimum tree cover.

4 Conclusion

4.1 Gap examples: linear program, algorithm.

We do not have examples where the worst-case performance of our algorithm is
actually achieved. However, we do have examples where the ratio of our solution
to the LP solution is equal to the performance guarantee.

For the tour cover problem, consider the unit complete graph. It is easy to
see that an optimal LP solution is obtained by setting . = ﬁ for each edge in

Z((Z:;)) ~ %. Our algorithm will round this to

a tree, which could yield a star having n — 1 edges and all nodes of odd degree.
The second stage will then yield a tour having roughly 2 (n — 1) edges, which is
of weight 3 times the LP solution.

We are not aware of any graph for which the Rajagopalan-Vazirani algorithm
achieves its worst case bound of % Hence for the tree cover, we do not have an
example where the ratio of our solution to even the LP optimum is 3. However,
for the complete unit graph, it is easy to see that the integrality gap is at least 2.

the graph. This solution has value

4.2 Further open questions.

Obtaining approximation algorithms with better approximation guarantees is an
obvious open question. We note that we do not have examples where either algo-
rithm actually achieves its worst-case performance bound, so it may be possible

to improve the performance guarantees of our algorithms with tighter analyses.
The directed version of both problems remains wide open.

We also note that we use a two stage procedure to solve these problems. A

single procedure which directly puts us in the desired polytopes might yield a
better approximation ratio.

References

1.

2.

10.

11.

E. M. Arkin, M. M. Halldérsson, and R. Hassin. Approximating the tree and tour
covers of a graph. Information Processing Letters, 47:275-282, 1993.

D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on
the prize collecting traveling salesman problem. Math. Programmaing, 59:413-420,
1993.

R. D. Carr, T. Fujito, G. Konjevod, and O. Parekh. A 2%—approximation algorithm
for a generalization of the weighted edge-dominating set problem. In procof "ESA
007, 2000.

L. Fleischer. Approximating fractional multicommodity flow independent of the
number of commodities. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pages 24-31, 1999.

N. Garg and J. Kénemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. In Proceedings of the 39th Annual IEEE
Symposium on Foundations of Computer Science, pages 300-309, 1998.

M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming
relaxations and the parsimonious property. Math. Programming, 60:145-166, 1993.
M. Grétschel, L. Lovész, and A. Schrijver. Geometric Algorithms and Combinato-
rial Optimization. Springer, 1988.

G. Robins and A. Zelikovsky. Improved Steiner tree approximation in graphs. In
Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 770-779, 2000.

D. B. Shmoys and D. P. Williamson. Analyzing the Held-Karp TSP bound: a
monotonicity property with application. Information Processing Letters, 35:281—
285, 1990.

V. V. Vazirani and S. Rajagopalan. On the bidirected cut relaxation for the metric
Steiner tree problem. In Proceedings of the 10th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 742751, 1999.

L. A. Wolsey. Heuristic analysis, linear programming and branch and bound. Math.
Programming Stud., 13:121-134, 1980.

